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What is group scale?

A statistical problem

possible outcomes:

We have 3 workers:

and 3 shifts D D N

N  is night shift

D is day shift
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What is group scale?

ND D

A statistical problem

possible outcomes:

We have 3 workers:

and 3 shifts

N  is night shift

D is day shift

Each week the boss assigns the workers to shifts:

Mr. , a disabled, feels discriminated by beeing 
unequally treated in the assignment to shifts.
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What is group scale?

The statistical data

possible outcomes: Each week the boss assigns the workers to shifts:

A dataset from the last 11 weeks.
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What is a group?

The group S3

Elements:

1=
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What is a group?

The group S3

Elements:

1=

Interpretation of elements:

Startconfigeration:

Element

Elements describe a reordering
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What is a group?

The group S3

Elements:

1=

Interpretation of multiplication:

=

is sequential application of reordering

Statistics in groups – p.4/20



What is a group?

A group is:

A set of Elements:

1= =
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A set of Elements:

1= =

with a multiplication:

having a 1, doing nothing:

=

1 a a
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What is a group?

A group is:

A set of Elements:

1= =

with a multiplication:

having a 1, doing nothing:

=

1 a a

and inverse elements, inverting the reordering:

=

a a 1-1
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Motivation of equivalence classes

The following predications might or might not be true:

The two day shifts are similar/indistinguishable.

Mr. Blue has the same qualification as Mr. Green.

Mr. Red and Mr. Green are similar.

The assignment of Mr. Red and Mr. Green to shifts is
not available due to privacy reasons.
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Right equivalence classes

Group S3 Subgroup S2

Startconfiguration

Groupfactor
S3/S2
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Left equivalence classes

Group S3 Subgroup S2

Startconfiguration

Groupfactor
S2\S3
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Types of equivalence classes

We can distinguish 3 types of equivalence classes:
Right group quotients:

G/S := {gS : g ∈ G}

Left group quotient:

S\G := {Sg : g ∈ G}

Double group quotients:

S\G/T := {SgT : g ∈ G}
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Examples of group scale

Object Orientations

Crystallography, Industrial processes, . . .

Spherical/Directional data

Axial data

Crystallographic orientations

Assignments
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Examples of group scale

Object Orientations

Spherical/Directional data

paleomagnetic orientation,
normals of sedimentations plains,
orientation of line dislocations, pole wandering
Books: Fisher/Lewis/Embleton (1987), Mardia (1972),
Watson (1983)

Axial data

Crystallographic orientations

Assignments
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Examples of group scale

Object Orientations

Spherical/Directional data

Axial data

Normals of schist plains, lineation of rocks,
crystallographic c-axis
fiber orientation of polymeres, magnetic susceptibilty

Crystallographic orientations

Assignments
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Examples of group scale

Object Orientations

Spherical/Directional data

Axial data

Crystallographic orientations

Grain Boundary

Sample of polycrystalline salt

Locations of orientation measurement in a Scanning Electrone Microscope

Crystalls with variouse orientations

Cl

Na

Used in geology, material sciences, chip production,
alluminum industry

Assignments
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Examples of group scale

Object Orientations

Spherical/Directional data

Axial data

Crystallographic orientations

Assignments

Maier   Huber  Müller  | O’Reilly O’Nelly O’Donald | Smith Fisher Small 

Boss  Tech. Tech. | Boss Tech. Tech. | Boss Tech. Tech.  

S(9)

German Irish American

S(3) 

S(3)xS(3)xS(3)

S(2)xS(2)xS(2)

S(3)

Data in
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Examples of symmetry

Exchangebility of objects and groups

Maier   Huber  Müller  | O’Reilly O’Nelly O’Donald | Smith Fisher Small 

Boss  Tech. Tech. | Boss Tech. Tech. | Boss Tech. Tech.  

S(9)

German Irish American

S(3) 

S(3)xS(3)xS(3)

S(2)xS(2)xS(2)

S(3)

Data in

Axial Rotation symmetry

Mirror Symmetry

Symmetry of forms and lattices
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Examples of symmetry

Exchangebility of objects and groups

Axial Rotation symmetry

Mirror Symmetry

Symmetry of forms and lattices
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What is different in group scale?
√

means that a replacement is available in group scale.

No +, only a ·
no summing,

√

no expectation,
no moments,

√

no mean,
√

no variance,
√

no y = a + bx + ε
√

No 0, only a 1

No <

No euclidean space

No idea
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What is different in group scale?
√

means that a replacement is available in group scale.

No +, only a ·
No 0, only a 1
no H0 : µ = 0vs.H0 : µ 6= 0,

√

no E[ε] = 0
√

No <

No euclidean space

No idea
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What is different in group scale?
√

means that a replacement is available in group scale.

No +, only a ·
No 0, only a 1

No <
no cdf,

√

no ranks,
no quantiles,
no median,
no histograms

No euclidean space

No idea
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What is different in group scale?
√

means that a replacement is available in group scale.

No +, only a ·
No 0, only a 1

No <

No euclidean space
no undistorted scatterplot,
no least squares,

√

no PCA,
√

no euclidean/manhattan/Mahalanobis distance,
√

no normal distribution,
√

no characteristic function,
√

no Lesbegue measure
√

No idea
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What is different in group scale?
√

means that a replacement is available in group scale.

No +, only a ·
No 0, only a 1

No <

No euclidean space

No idea
. . . , how to work in group scale.

√
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Haar measure and densities

Haar measure η
For compact groups there is one unique probability
measure η with forall g ∈ GABARDINE

η(A) = η(gA)

ηG is the uniform distribution on G.
dηG replaces dλλ

Haar measure of S3
η(             )=1/6
η(             )=1/6
η(             )=1/6
η(             )=1/6
η(             )=1/6
η(             )=1/6

Probability densities
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Haar measure and densities

Haar measure η

Probability densities

P (A) =

∫

A

f(g)dηG(g)

f(g) = multiples of uniform distribution at g
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Representations

Compact Groups have a (more or less) unique sequence of
characteristic representations

Tl : G → R
dl×dl

Group S3 T0(g) T1(g) T2(g)
-sin 0
 cos 0

cos 0
sin 0

-sin120
 cos120

cos120
sin120

-sin240
 cos240

cos240
sin240

-sin 0
 cos 0

cos 0
sin 0

-sin120
 cos120

cos120
sin120

-sin240
 cos240

cos240
sin240

(     )

(     )

(     )

(     )

(     )

(     )

(1)

(1)

(1)

(1)

(1)

(1)

( 1)

(-1)

( 1)

(-1)

( 1)

(-1)

Representations are homomorphisms

Their matrix elements T ij
l (g) span L2(ηG) as orthogonal

Hilbert basis.

span

〈

T ij
l (g)

〉

are the only invariant subspaces of L2(ηG).
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Representations are homomorphisms

T (g1g2) = T (g1)T (g2)
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Representations

Compact Groups have a (more or less) unique sequence of
characteristic representations

Tl : G → R
dl×dl

Representations are homomorphisms

Their matrix elements T ij
l (g) span L2(ηG) as orthogonal

Hilbert basis.

Tl(g) =







T 11

l (g) · · · T 1dl

l (g)
... . . . ...

T dl1

l (g) · · · T dldl

l (g)







span

〈

T ij
l (g)

〉

are the only invariant subspaces of L2(ηG).

Statistics in groups – p.13/20



Representations

Compact Groups have a (more or less) unique sequence of
characteristic representations

Tl : G → R
dl×dl

Representations are homomorphisms

Their matrix elements T ij
l (g) span L2(ηG) as orthogonal

Hilbert basis.

span

〈

T ij
l (g)

〉

are the only invariant subspaces of L2(ηG).

Only information given in these subspaces is invariant
under group operations.
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Moments

Using characteristic representaitions, we can define
(uncentered/matrix valued) moments.

µl := E[Tl(g)]

µl is compatible with group action

With convolutions µl behaves like a classical mean

(µl)l uniquely defines P

(µl)l is a characteristic transform

However µ1 6∈ G
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Moments

Using characteristic representaitions, we can define
(uncentered/matrix valued) moments.

µl := E[Tl(g)]

µl is compatible with group action

E[X + c] = E[X] + c ↔ E[Tl(σg)] = Tl(σ)µl

With convolutions µl behaves like a classical mean

(µl)l uniquely defines P

(µl)l is a characteristic transform

However µ1 6∈ G
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Moments

Using characteristic representaitions, we can define
(uncentered/matrix valued) moments.

µl := E[Tl(g)]

µl is compatible with group action

With convolutions µl behaves like a classical mean

E[X + Y ] = E[X] + E[Y ] ↔ µP∗Q
l = µP

l µQ
l

(µl)l uniquely defines P

(µl)l is a characteristic transform

However µ1 6∈ G
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Moments

Using characteristic representaitions, we can define
(uncentered/matrix valued) moments.

µl := E[Tl(g)]

µl is compatible with group action

With convolutions µl behaves like a classical mean

(µl)l uniquely defines P
. . . like a sequence of all moments and like the
characteristic function.

(µl)l is a characteristic transform

However µ1 6∈ G
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Moments

Using characteristic representaitions, we can define
(uncentered/matrix valued) moments.

µl := E[Tl(g)]

µl is compatible with group action

With convolutions µl behaves like a classical mean

(µl)l uniquely defines P

(µl)l is a characteristic transform
Convolution correspond to products like with
characteristic functions:

(f ∗ g)(x) = f∗(x)g∗(x) ↔ (µP∗Q
l )l = (µP

l µQ
l )l

However µ1 6∈ G

Statistics in groups – p.14/20



Moments

Using characteristic representaitions, we can define
(uncentered/matrix valued) moments.

µl := E[Tl(g)]

µl is compatible with group action

With convolutions µl behaves like a classical mean

(µl)l uniquely defines P

(µl)l is a characteristic transform

However µ1 6∈ G
µ1 does not replace the mean as a measure of location
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Symmetry and moments

Classical example: Skewness
Symmetry around the mean implies

E[(x − µ1)
3] = 0

a symmetric distribution

x1

F
re

qu
en

cy

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0
10

0
20

0
30

0
40

0
50

0

skewness= 0.004

a skew distribution

x2

F
re

qu
en

cy

1 2 3 4

0
10

0
20

0
30

0
40

0
50

0

skewness= 1.2

Symmetry in groups scale is subgroup symmetry

Symmetry can be checked by linear conditions on the
moments

Symmetric representations
:

T l(g)

Symmetric moments

µS·
l := E[

:

T l(g)] = Alµl
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Symmetry and moments

Classical example: Skewness

Symmetry in groups scale is subgroup symmetry

Maier   Huber  Müller  | O’Reilly O’Nelly O’Donald | Smith Fisher Small 

Boss  Tech. Tech. | Boss Tech. Tech. | Boss Tech. Tech.  

S(9)

German Irish American

S(3) 

S(3)xS(3)xS(3)

S(2)xS(2)xS(2)

S(3)

Data in

Symmetry can be checked by linear conditions on the
moments

Symmetric representations
:

T l(g)

Symmetric moments

µS·
l := E[

:

T l(g)] = Alµl
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Symmetry and moments

Classical example: Skewness

Symmetry in groups scale is subgroup symmetry

Symmetry can be checked by linear conditions on the moments
P is (left-)symmetric with respect to a subgroup S if and
only if forall l

imµl ⊥ span
s∈S

im(Tl(s) − Tl(0))

Usefull for checking for symmetry:

H0 : Nlµl = 0 vs. H1 : Nlµl 6= 0

with imN t
l = span

s∈S

im(Tl(s) − Tl(0))

Symmetric representations
:

T l(g)

Symmetric moments

µS·
l := E[

:

T l(g)] = Alµl
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Symmetry and moments

Classical example: Skewness

Symmetry in groups scale is subgroup symmetry

Symmetry can be checked by linear conditions on the moments

Symmetric representations
:

T l(g)
If P is (left-)symmetric with repect to a subgroup S the
Tl can be replaced by:

:

T l(g) := AlTl(g)

With some orthogonal rectangular matrix Al spanning
kerNl. Usefull for information reduction when a
symmetry is part of the Hypothesis.

Symmetric moments

µS·
l := E[

:

T l(g)] = Alµl
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Symmetry and moments

Classical example: Skewness

Symmetry in groups scale is subgroup symmetry

Symmetry can be checked by linear conditions on the moments

Symmetric representations
:

T l(g)

Symmetric moments

µS·
l := E[

:

T l(g)] = Alµl
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Types of symmetric representations

We can distinguish 3 types of equivalence classes:
Right group quotients G/S:

.

T l(g) := Tl(g)At
l

Left group quotients S\G:

:

T l(g) := AlTl(g)

Double group quotients S\G/R:

:.

T l(g) := AlTl(g)Bt
l

Statistics in groups – p.16/20



Application to example

Exchangebility of nondisabled workers
Group S3 T0(g) T1(g) T2(g)

-sin 0
 cos 0

cos 0
sin 0

-sin120
 cos120

cos120
sin120

-sin240
 cos240

cos240
sin240

-sin 0
 cos 0

cos 0
sin 0

-sin120
 cos120

cos120
sin120

-sin240
 cos240

cos240
sin240

(     )

(     )

(     )

(     )

(     )

(     )

(1)

(1)

(1)

(1)

(1)

(1)

( 1)

(-1)

( 1)

(-1)

( 1)

(-1)

H1 : Exchangebility of day shifts and nondisabled workers

H0 : Exchangebility of all three Workers

Our Testproblem is:

H0 : E[
:.

T 2(g)] = 0 vs. H1 : E[
:.

T 2(g)] 6= 0

With

:.

T 2(g) =

{

2, if Mr. Blue is in night shift
−1, if Mr. Blue is in day shift

Maybe this is not so surprising, however this was the
most simple example.
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Application to example

Exchangebility of nondisabled workers

Group S3 Subgroup S2

Startconfiguration

Groupfactor
S3/S2

H1 : Exchangebility of day shifts and nondisabled workers

H0 : Exchangebility of all three Workers

Our Testproblem is:

H0 : E[
:.

T 2(g)] = 0 vs. H1 : E[
:.

T 2(g)] 6= 0

With

:.

T 2(g) =

{

2, if Mr. Blue is in night shift
−1, if Mr. Blue is in day shift
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most simple example.
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Application to example

Exchangebility of nondisabled workers

(     )( )=( )

S3/S2 T0(g) T1(g) T2(g)
-sin 0
 cos 0

cos 0
sin 0

-sin120
 cos120

cos120
sin120

-sin240
 cos240

cos240
sin240

-sin 0
 cos 0

cos 0
sin 0

-sin120
 cos120

cos120
sin120

-sin240
 cos240

cos240
sin240

(     )( )=( )

(     )( )

(     )( )

(     )( )

(     )( )

(1)

(1)

(1)

(1)

(1)

(1)

()

()

()

()

()

()

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

H1 : Exchangebility of day shifts and nondisabled workers

H0 : Exchangebility of all three Workers

Our Testproblem is:

H0 : E[
:.

T 2(g)] = 0 vs. H1 : E[
:.

T 2(g)] 6= 0

With

:.

T 2(g) =

{

2, if Mr. Blue is in night shift
−1, if Mr. Blue is in day shift

Maybe this is not so surprising, however this was the
most simple example.
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Application to example

Exchangebility of nondisabled workers

H1 : Exchangebility of day shifts and nondisabled workers

Group S3 Subgroup S2

Startconfiguration

Groupfactor
S2\S3

H0 : Exchangebility of all three Workers

Our Testproblem is:

H0 : E[
:.

T 2(g)] = 0 vs. H1 : E[
:.

T 2(g)] 6= 0

With

:.

T 2(g) =

{

2, if Mr. Blue is in night shift
−1, if Mr. Blue is in day shift

Maybe this is not so surprising, however this was the
most simple example.
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Application to example

Exchangebility of nondisabled workers

H1 : Exchangebility of day shifts and nondisabled workers

(     )( )=2

S2\S3/S2 T0(g) T1(g) T2(g)
-sin 0
 cos 0

cos 0
sin 0

-sin120
 cos120

cos120
sin120

-sin240
 cos240

cos240
sin240

-sin 0
 cos 0

cos 0
sin 0

-sin120
 cos120

cos120
sin120

-sin240
 cos240

cos240
sin240

(     )( )=2

(     )( )=-1

(     )( )=-1

(     )( )=-1

(     )( )=-1

(1)

(1)

(1)

(1)

(1)

(1)

()

()

()

()

()

()

1
1

1
1

1
1

1
1

1
1

1
1

(1 1)

(1 1)

(1 1)

(1 1)

(1 1)

(1 1)

H0 : Exchangebility of all three Workers

Our Testproblem is:

H0 : E[
:.

T 2(g)] = 0 vs. H1 : E[
:.

T 2(g)] 6= 0

With

:.

T 2(g) =

{

2, if Mr. Blue is in night shift
−1, if Mr. Blue is in day shift

Maybe this is not so surprising, however this was the
most simple example.

Statistics in groups – p.17/20



Application to example

Exchangebility of nondisabled workers

H1 : Exchangebility of day shifts and nondisabled workers

H0 : Exchangebility of all three Workers

(     )()=()

S2\S3/S3 T0(g) T1(g) T2(g)
-sin 0
 cos 0

cos 0
sin 0

-sin120
 cos120

cos120
sin120

-sin240
 cos240

cos240
sin240

-sin 0
 cos 0

cos 0
sin 0

-sin120
 cos120

cos120
sin120

-sin240
 cos240

cos240
sin240

(     )()=()

(     )()=()

(     )()=()

(     )()=()

(     )()=()

(1)

(1)

(1)

(1)

(1)

(1)

()

()

()

()

()

()

(1 1)

(1 1)

(1 1)

(1 1)

(1 1)

(1 1)

Our Testproblem is:

H0 : E[
:.

T 2(g)] = 0 vs. H1 : E[
:.

T 2(g)] 6= 0

With

:.

T 2(g) =

{

2, if Mr. Blue is in night shift
−1, if Mr. Blue is in day shift

Maybe this is not so surprising, however this was the
most simple example.
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Application to example

Exchangebility of nondisabled workers

H1 : Exchangebility of day shifts and nondisabled workers

H0 : Exchangebility of all three Workers

Our Testproblem is:

H0 : E[
:.

T 2(g)] = 0 vs. H1 : E[
:.

T 2(g)] 6= 0

With

:.

T 2(g) =

{

2, if Mr. Blue is in night shift
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most simple example.
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Is Mr. Blue discriminated?

mean
:.

T 2 =
1

11

11
∑

i=1

:.

T 2(gi) = 0.9090909

The statistical data

possible outcomes: Each week the boss assigns the workers to shifts:

A dataset from the last 11 weeks.

The test problem

H0 : E[
:.

T 2(g)] = 0, P = Uniform
vs.

H1 : E[
:.

T 2(g)] > 0

exact p-value = 0.03863

Result: Mr. Blue gets significantly more night shifts than
his comparable colleagues Mr. Green and Mr. Red.

Statistics in groups – p.18/20



Is Mr. Blue discriminated?

The test problem

H0 : P (A) = P (σAτ),

for all σ ∈ span

〈 〉

,

and for all τ ∈
〈

,
〉

vs.
H1 : P (A) = P (σAτ),

for all σ ∈ span

〈 〉

,

and for all τ ∈
〈 〉

,

and P ( ) > P ( )

H0 : E[
:.

T 2(g)] = 0, P = Uniform
vs.

H1 : E[
:.

T 2(g)] > 0

exact p-value = 0.03863

Result: Mr. Blue gets significantly more night shifts than
his comparable colleagues Mr. Green and Mr. Red.

Statistics in groups – p.18/20



Is Mr. Blue discriminated?

The test problem

H0 : E[
:.

T 2(g)] = 0, P = Uniform
vs.

H1 : E[
:.

T 2(g)] > 0

exact p-value = 0.03863

Result: Mr. Blue gets significantly more night shifts than
his comparable colleagues Mr. Green and Mr. Red.

Statistics in groups – p.18/20



Is Mr. Blue discriminated?

The test problem

H0 : E[
:.

T 2(g)] = 0, P = Uniform
vs.

H1 : E[
:.

T 2(g)] > 0

exact p-value = 0.03863

Result: Mr. Blue gets significantly more night shifts than
his comparable colleagues Mr. Green and Mr. Red.

Statistics in groups – p.18/20



Is Mr. Blue discriminated?

The test problem

H0 : E[
:.

T 2(g)] = 0, P = Uniform
vs.

H1 : E[
:.

T 2(g)] > 0

exact p-value = 0.03863

Result: Mr. Blue gets significantly more night shifts than
his comparable colleagues Mr. Green and Mr. Red.

Statistics in groups – p.18/20



Elements of group scale statistics

Moments / characteristic transform

µl = E[Tl]

Testproblems based on symmetry

Distances

Kernel density estimation

Location and spread parameters

Clusteranalysis

Graphics

Symmetric Beran type exponential families

Dependence models / group regression
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Elements of group scale statistics

Moments / characteristic transform

Testproblems based on symmetry

Distances
based on

‖Tl(g1) − Tl(g2)‖

Kernel density estimation

Location and spread parameters

Clusteranalysis

Graphics

Symmetric Beran type exponential families
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Elements of group scale statistics

Moments / characteristic transform

Testproblems based on symmetry

Distances

Kernel density estimation
based on group convolution, moments and distance
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Estimated Density

Location and spread parameters

Clusteranalysis

Graphics

Symmetric Beran type exponential families

Dependence models / group regression
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Elements of group scale statistics

Moments / characteristic transform

Testproblems based on symmetry

Distances

Kernel density estimation

Location and spread parameters
based on distances

Clusteranalysis

Graphics

Symmetric Beran type exponential families

Dependence models / group regression
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Elements of group scale statistics

Moments / characteristic transform

Testproblems based on symmetry

Distances

Kernel density estimation

Location and spread parameters

Clusteranalysis

Graphics
based on group quotients and representations

RGB GRB BRG BGR GBR RBG

Full group

0
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2
3
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XXB XXG XXR

Simplified by Symmetry

0
2

4
6

Symmetric Beran type exponential families

Dependence models / group regression
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Elements of group scale statistics

Moments / characteristic transform

Testproblems based on symmetry

Distances

Kernel density estimation

Location and spread parameters

Clusteranalysis

Graphics

Symmetric Beran type exponential families
based on Haar measure and Tl(g) as sufficient statistics

dP

dη
(g) = A(θ) exp

(

L
∑

l=1

tr θt
l

:.

T l(g)

)

Dependence models / group regression
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Elements of group scale statistics

Moments / characteristic transform

Testproblems based on symmetry

Distances

Kernel density estimation

Location and spread parameters

Clusteranalysis

Graphics

Symmetric Beran type exponential families

Dependence models / group regression
based on generalised linear models and exponential
families. e.g.

θ1 = M + αT1(x)

Statistics in groups – p.19/20



Conclusions

Group scale is substantially different from real and categorial
scale.
No +, No 0, No <, No R

d

Group scale has its own statistical questions.

Group scale has its own statistical methods and models.

Group scale comes in many guises and always as special case.

Methods for group scale are – also desirable – not in generality
available.

Thank you for your attention
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Conclusions

Group scale is substantially different from real and categorial
scale.

Group scale has its own statistical questions.

Group scale has its own statistical methods and models.
. . . easy to explain in 25 hours

Group scale comes in many guises and always as special case.

Methods for group scale are – also desirable – not in generality
available.
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Conclusions

Group scale is substantially different from real and categorial
scale.

Group scale has its own statistical questions.

Group scale has its own statistical methods and models.

Group scale comes in many guises and always as special case.
. . . needing to be recognized.

Methods for group scale are – also desirable – not in generality
available.

Thank you for your attention
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Conclusions

Group scale is substantially different from real and categorial
scale.

Group scale has its own statistical questions.

Group scale has its own statistical methods and models.

Group scale comes in many guises and always as special case.

Methods for group scale are – also desirable – not in generality
available.
. . . especially not in software.

Thank you for your attention
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