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1. Abstract
Many data in structural geology consist of directions and axes. Different directional
measurements are associated with different objects (foliation, lineation, strain-markers)
and different events and times. Structural direction interrelate in a complex way. They
depend on various external parameters such as paleostress and material properties. This
contribution provides some ideas how to integrate these complex data into meaningful
stochastic models, which allow to analyze the dependence of directions statistically.

The central idea is the generalization of multivariate analysis of variance and multi-
ple regression to directions and symmetric directions (e.g. axes). The generalization is
based on a general distribution family for directions introduced by Beran and generalized
linear models. The directions are rather described by their distribution than by their
expected value as the analysis of variance for real variable does. The model works for
2D-directions, 2D-axes 3D-directions, 3D-axes and 3D-orientations. Possible independent
variables are categorical and real values, physical tensors and further geometric objects
such as directions and axis.

These models provide one possibility of a multivariate joint analysis of geometrical,
categorical and real measurements. They can be used in a way very similar to multiple
regression models. A measure of goodness of fit analogous to R2 is provided by an entropy
measure telling how precisely the directions are determined by the independent variables.
ANOVA tests and tables are replaced by likelihood ratio tests and corresponding entropy
measures.

2. Analysis of variance and linear models
In the beginning we should clarify that this paper only develops a new method for data
types common in geology. Whether the method is useful for real world geological appli-
cations must be proven by the practice in future. The method we develop is analysis of
variance and regression methods for directions and axes.

Analysis of variance (also called ANOVA) and linear regression are nice and apparently
everywhere used methods to explore the dependence of quantities of the real scale on
other quantities of cardinal or real scale. The quantity of interest, whose dependence we
explore, is called dependent variable and denoted by Y throughout the paper. The other
variables, which are supposed to determine the distribution of Y are called independent
variables and in this paper denoted as X1, X2, . . . , Xp if they are of real scale and by
k, l, m if they are on a categorical scale. In classical situation we assume Y to dependent
on the independent variables linearly with an additive random error ε with mean zero
and constant variance σ2:

Y = a1X1 + a2X2 + ... + apXp + bk + cl + ... + dm + ε



Often a normal distribution is assumed for the stochastic term ε. The ai, bi, ci, di,
i = 1, . . . are assumed to be unknown constant real parameters. The models are called
linear models, because Y is written in a linear form of these unknown parameters. Many
different statistical methods have been developed for this class of models. E.g. we can
prove the dependence of Y on Xi statistically, by a test giving statistical evidence for
ai <> 0. When we have estimated parameters ai, bi, ci, di, we are able to give expected
values and confidence regions for Y , for every known set of independent variables X1,
X2,. . .,Xp, k, l, m. The measure R2 provides us with a measure of the importance of the
modeled influence. R2 is defined to be the residual variance left to the randomness of ε,
divided by the total variance of Y disregarding any dependence. It is thus a measure of
which part of the variance could be explained by the deterministic dependence of Y on
the independent variables. More complex models can be built, which model interaction
of the influence owed by the independent variables:

Y = a1X1 + a2X2 + a12X1X2 + ... + bk + cl + dkl + ... + ε

This is an interaction model. It is possible to compare models with more and with less
terms on the right hand side and to decide statistically, whether the additional parameters
are really needed to explain the behavior of Y . In general we should use the most simple
model, which is not contradicted by the data.

However this nice and powerful methods cannot directly and meaningfully be applied
to the most popular types of data in structural geology, which are directions and axes.
Depending on the representation of directions we use, there are two direct ways of appli-
cation of ANOVA to them and we should clarify why they are not useful.

3. Directions and axes
Geological directions and axes are conventionally described by strike s and dip d. The
dip is always between −90o and 90o. For directions the strike directions can vary between
0o and 360o, while for axes it can vary between 0o and 180o only, because for directions
we have to decide whether they head to west or east, while for axes both headings are
indistinguishable.

Thus directions and axes are described by two real numbers and we could think about
simply applying multivariate analysis of variance to these two angels. However due to the
discontinuity in the parameter space at strike zero we would get totally different results
and artefacts, whenever the features strike north.

Directions can be represented without such discontinuities as vectors in the three
dimensional space. However in this representation directions can neither be distributed
normally nor have any expected value possibly resulting from linear combinations of the
independent variables, because they reside on the unit sphere. The situation is even
worse for axes, which are represented by a vector and its antiparallel vector in three
dimensional space. Axes cannot be distributed normally and the expected value of their
vector representation would always be zero and thus not useful for linear modeling.

4. Generalized linear models
The central idea to generalize linear models for nonlinear manifolds is to view the central
modeling equation (1) not as an equation for the expected value, but for a parameter of
the distribution of Y:

Y ∼ N(a1X1 + a2X2 + ... + apXp + bk + cl + ... + dm, s2)



This idea can be generalized for distributions other than the normal distribution. This
models are then called generalized linear models in literature (McCullagh, P., A.
Nelder, 1989). E.g. When Y is a two stage variable we can have models like:

Y ∼ Binomial(exp(Z)/(1 + exp(Z)), Z = a1X1 + a2X2 + ... + apXp + bk + cl + ... + dm

which is called a logit model in literature, since the log odds log(p/(1− p)) are linear in
the parameters. Generalized linear models normally work well with exponential family
distributions.

5. Spherical and axial distributions
In order to apply generalized linear models to directions and axes we need appropriate
distribution families. The most popular exponential family distributions for directions is
the Fisher distribution. In natural parameterisation it reads:

fv(y) = cv exp(vty),

with a parameter v ∈ IR3 and an appropriate normalization constant cv such that f is a
distribution density on the direction sphere. It is necessary to use the natural parametri-
sation v ∈ IR3 as exponential distribution family instead of the common parametrisation
with a unit vector and a concentration parameter κ to apply generalized linear modell
theory later. The spherical Fisher distribution is an unimodal distribution of directions
and has near to normal distribution shape as far as this is possible on the direction sphere.
The most often used distributions for axes is given by the Bingham distribution, which
has a symmetric matrix valued parameter F

fF(y) = cF exp(ytFy)

again cF is a normalization constant. This density is equal for y and −y and thus
a proper density for axes. The Bingham distribution can model bimodal distribution
and great circle distributions of directions and a unimodal distribution and great circle
distributions of axes. Both models yield a valid distribution density regardless of the
parameters v or F. Details on the distributions can be found in (Fisher 1995).

More advanced spherical exponential families modeling more complex conditional dis-
tributions can be found in (Beran 1979). These families similar to the Fisher distribution,
but use spherical harmonic functions Yn

l up to a fixed degree l ≤ L instead of the vector
x.

fθ(x) = cθ exp

(
L∑

l=1

2l+1∑
n=0

Y n
l (x)θn

l

)
They can be applied to axes by using only the harmonic functions with even degree l. The
spherical Fisher distribution is the case L = 1 and the Bingham distribution is the case
L = 2 for axes. The formulae in this paper will be written for the Fisher and Bingham
distributions. But they stay valid for the general case just replacing the parameter v with
θ = (θn

l ) and the same ideas apply. Models with conditional distributions of orientations
based on the Fisher-matrix distribution for orienations its generalizations are discussed
in (Boogaart 2002).

6. Spherical regression models
We can now model the stochastic dependence of the directions on independent variables



modeling the parameter of their distribution as a linear function of the independent vari-
ables.

v = a1X1 + a2X2 + ... + apXp + bk + cl + ... + dm

The unknown parameters ai, bi, ci, di, i = 1, . . . are now supposed to be vectors
rather than numbers, since here we need to calculate all three vector components of the
parameter v rather than just one mean value. The direction of v can be interpreted as
mean direction and the length of v determines the spread of the distribution around the
central direction. Analogously for axes we can model a linear dependence of F on the
independent variables:

F = A1X1 + A2X2 + ... + ApXp + Bk + Cl + ... + Dm

The unknown parameters Ai, Bi, Ci, Di, i = 1, . . . are now supposed to be symmetric
matrices rather than numbers. The first eigenvector of F specifies the modal direction and
the other two determine the anisotropy of the bellshaped double mode. The eigenvalues
determine the density in the three eigendirections of F.

7. Spherical regressors and directions
Natural directions, vectors, axes, and tensors are good candidates for independent vari-
ables determining the distributions of the observed directions and axes. Examples for such
independent variables are moving directions, relative displacement, main axes of stress
field or the strain tensor.

Some of them can be used as regressors in a canonical way. First of all directions can
be represented as real numbers, the entries xi of the vector x = (xi)i=1,...,3 and thus be
used as regressors. Thus we need an additional matrix valued parameter M ∈ IR3×3:

v = . . . + Mkxk + . . .

However a useful assumption would be that the influence induced by x is symmetric
around x and thus Mx ‖ x, which implies Mk = AkI, Ak ∈ IR.Thus, the symmetric
influence of a direction can be modeled with only one additional real parameter Ak ∈ IR
in the model:

v = . . . + Akxk + . . .

Here the regressor x can be either the vectorial representation of a direction x ∈ S2 or a
full vector x ∈ IR3. When we use the more complicated families of (Beran 1979) instead
of Fisher distribution, we need no use the harmonic functions as regressors instead of x.

8. Axial regressors and axes
With the same argument of symmetry it is not useful to have axial regressors for directions
or directional regressors for axes. However a symmetric axial regressor for axes is made
up by

F = . . . + Akxxt + . . . , Ak ∈ IR

The xxt is a symmetric tensor of rank 2. Other symmetric tensors εij of rank 2 can be
used as regressors using only one parameter in the same way.

F = . . . + Ak(εij)ij + . . . , Ak ∈ IR

When we use the more complicated families of (Beran 1979) instead of the Bingham
distribution, we need no use the even harmonic functions as regressors instead of xxt.



9. Measure of Randomness
A measure of randomness analogously to R2 in ANOVA and linear regression is provide
by the entropy (Kullback 1959).

I(f) :=

∮
f(y) ln f(y)dy

dy denotes the integration over the sphere, which can be written as dy := 1
4π

cos(d)ddds
and f the density of the distribution given by the model and its estimated parameters ac-
cording to dy. A measure varying between 0 and 1, where 1 describes perfect explanation
and 0 no difference to the model of total randomness, is given by:

R2 := 1− I(f)2

This measure can be used like the ordinary R2 of linear regression. Indeed the definition
is equal to R2, when using linear models.

10. Parameter estimation and testing
The model is a special case of an exponential distribution family, where the regression pa-
rameters are the natural parameters of the model. Thus parameter estimation and testing
can be done according to the standard techniques for exponential families e.g. (Witting
1995). The maximum likelihood estimator for the parameters can be calculated by the
iteration scheme of Fisher’s scoring method. Test problems testing one of these regression
models as hypothesis and another model with additional parameters as alternative can
be constructed as the standard likelihood ratio test.

11. Conclusions
The basic methods of real ANOVA given by modeling influences, estimating the param-
eters and choosing models based on model comparison tests and a measure of residual
randomness given by R2 can be applied to directions and axes by the models proposed
here. Additionally to real and categorical regressors we can use directions and vectors for
directions or axes and rank 2 tensors for axes respectively.
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